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ThE APPROXIMATION OF SOLUTIONS TO THE BACKWARDS

HEAT EQUATI~t~ BY SOLUTIONS OF PSEUD OPARABOLIC EQUATIONS

by

DAVID COLTON*

Suiamary

It is well known that solutions of the backwards heat equation can be

approximated by solutions of a pseudoparabolic equation depending on a small

parameter c. The emphasis in this paper is on the mathematical problems

which arise in approximating solutions to initial—boundary value problems for

this perturbed equation. The approximation procedure we propose is obtaine*

through the development of a potential theory for pseudoparabolic equations,

the asymptotic evaluation of certain contour integrals, and results based on

a theorem of Levin in the theory of entire functions.

I. Introduction.

The problem of construc~ing solutions to the heat equation backwards in

time is one of the classical improperly posed problems in partial differential

equations. Mathematically the problem can be formulated (in R3) in the fol—

~ lowing manner : For D a bounded domain in R 3 find u (k,t), ~ £ R3, such

that

~ 3
U u~ in D x (O,t) (l.la)

u 0 on ~D ~ (O ,t) (l.lb)

u(~ ,t0) $(~) in D (l.lc)

where $(~) is a prescribed function . As is well known ([151, [161) in

genera l no solution exists to (l.la) — (l.lc) and if it does the solution

does not depend continuously on the da ta +(~) in any reasonable norm . One

approach to “solving” (l.l a) — (l .lc) is the me thod of quasi—reversibili ty as
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initially developed by Lattes and Lions (Ill]), and it is a version of this

approach that we wish to discuss in this paper . The version we have in mind

is to replace the problem (1.la) — (l.lc) by the modified problem

£ 
~3
u
t 

— u~ + A3u — 0 in D x (0,t0) (1.2a)

u — 0 on ~D x (o,t0) (1.2b)

u(~,t0) 
— $(~

) in D (l.Zc)

where £ is a small positive parameter ([7], [9]). Three obvious questions

1~~ ediately presen t themselves:

1) Does a unique solution to (l.2a) — (1.Zc) exist for every £ ~ 0

and does it depend continuonsly on the data

~ 
2) As t -

~ 0 does the solution of (l.Za) — (l.2c) approach the solution

of (1.1*) — (l.lc) (if it exists!)?

3) What constructive methods are available for approximating the

solution of (l.2a) — (i.2c) for £ > 0?

In most discussions of the method of quasi—reversibility attention is usually

focused on questions 1) and 2), and the answer to 3) is normally “use f inite

difference approximations or partial eigenfunction expansions”. However for

multi—dimensional problems , large time intervals, and small values of the

parameter c, such methods are in general rather impractical . It is in fact

with this difficulty in mind that we have chosen to use the third order per-

turbed equation (l.2a) instead of the fourth order equation

c
~~~~

u _ u
t
+
~~3

u..O (1.3)

as proposed by Lattes and Lions ([111). As will be seen , such a choice will

enable us to use potential theoretic methods and asymptotic analysis to

examine solutions of (l.2a) — (l.2c) for small c , thus providing a more practi-

cal method f or constructing approximations to solutions of the backwards heat

equation in higher dimensions end for large time intervals.

Having tailored onr model (l.2a) — (l.2c) to give a satisfactory answer

to question 3) does not of course axcusa us from dealing with the first two
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questions! However, the question of existence, uniqueness, and continuous

dependence on the data is well known (c.f. [1]) and the second question has

been answered by Ewing in the following theorem ([7]):

Theorem 1: Let u(~,t) be a solution of (l.la), (l.lb) such that

— 

IIu(~,t0) — $( ;) 11 2 < 5, I ~u(~,0)~ I~~ < H, where 6,M are positive constants,

and let v(~,t) be the solution of (1.2a) — (i.2c) for £ — [log M1 1 —l~ Then

for every t > 0,
a. 

IIu-.v H 2 < C(t)c

where C(t) does not depend on £.

An obvious drawback of Ewing ’s result is that the error bound depends

logaritheically on ~ instead of Holder continuously as in the stabilized

quasi—reversibility method of Millar ([15]). A slmiliar problem also

arises if one uses quasi—reversibility methods in conjunction with (1.3),

or, in a different direction, Tikhonov’s regularization method for solving

the backwards heat equation (c.f. [8], [18]). In our case this means that

in order to achieve accurate results we must choose the parameter c to be

quite small and aesune that the data at t — t
o is measured with a high

degree of accuracy.

Although our analysis in what follows is presented for the heat equation

in R3, analogous results can also be obtained in R2 (see Section IV).

11. Potential Theory for the Pseudo—Heat Equation.

Equation (l.2a) is a particular example of an equation of pseudo—

parabolic or Sobolev type and is usually referred to as the pseudo—heat

equation . Equations of pseudoparabolic type appear in a variety of areas of

application and have been the object of a considerable amount of attention in

recent years . For information concerning this class of equations as well as

an extensive bibiograph~ ~a suggest consulting the recent book by Carroll and

Shuwalter ((1)). In this section we shall develop a potential theory for the

pseudo—heat equation ( ( 3 ) ,  (5]) with the aim ot using these results in
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Section III to construct approximations to the solution of (1.2a) — (l .2c) .

We shall develop this potential theory for the “forward” initial—boundary

value problem

£ A 3u~ 
— u

~ 
+ A3u — 0 in Dx(O,t 0) (2.la)

u — f (~ ,t) on ~D x (0 ,t )  (2.lb )

u(~,O) 0 in D (2.lc)

where f(~,t) is assumed to be continuously differentiable and reserve until

Section III the modifications and applications of these results to the study

of (l.2a) — (1.2c).

We begin by defining the fundamental solution for (2.la) by ([3), [5])

F(R, t—r) — — 

1w — ~~I — 

exp (—wR + 5
2 (t.-t)

1 dw (2.2)

where R — — for ~~~, ~ c R3 and the path of integration is a circle of

radius ~ traversed counterclockwise about the point w — —i. If we now assume

that D is a bounded, simply connected domain with Lyapunov boundary 3D and

let p (~~,r) denote a continuous density defined on 3D x (O,t0) ,  we can define

a pseudo—heat potential by

u(~ ,t) - ~ 10 LB ~~~~ r(R, t-T)dsdt (2.3)

where v denotes the unit normal on 3D pointing into D. In order for (2.3) to

be a solution of (2.la) — (2.lc) it is necessary to choose p(~~,t) such that

(2.lb) is satisfied . To this end we differentiate both sides of (2.3) with

respect to t and let -~ 3D. Then from the discontinuity properties of

metaharmonic potentials we arrive at an integral equation for p (~ ,t) of the

form

3/2 
• + + + J,~2)P (2.4)
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whet~e is a Fredholm integral operator over 3D, is a Volterra integral

operator over (0,t], and 
~2 

is a Volterra integral operator over 3D x [O ,t).

The kernels of these integral operators depend on r(R,t) and its derivatives

(c.f.(3]). Due to the fact that e > 0 we can deduce the following Theorem

([3]):

Theorem 2: Let C(3D x [O ,t0]) be the Banach space of continuous functions

defined over 3D x [fl,t )  with respect to the maxim~an norm . Then
t 

(~ + + + exists as a bounded linear operator on C(3D x [O ,t I ).

Hence any solution of (2.la) — (2.lc) can be represented in the form (2.3) for

some continuous density p(~ ,r).

In order to actually construct p(~~, r) from (2.4) it is necessary to

determine accurate approximations to r(a,t) ahd its derivatives for small

values of £ and R > 0, t > 0. Clearly it suffices to consider the function

K(R,t) - - f + 
l...~ U2 

du

— 
(2.5)

— — 
exp(—t/c) 4 exp ~— i  L + ~ Idu .

wj  J ,ç £(l—~~)

lu—i l —

The evaluation of K(R,t) can be conveniently divided into three separate

cases ((5]):

1) R—O, t—O(l). In this case we expand exp ( ~ 
2 in its Taylor

c d — p )
series in t and integrate termwise to arrive at

tt exp (—/)
K(O,t) — 

£ 
£ 

~ ‘2’ 2; /) (2.6)

where •(s , c;z) denotes the confluen t hyp ergeom.t ric function . From the

asymptotic behaviour of •(a ,c;z )  for large a (c.f.(6J) we have from (2.6)

that
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1 ‘~~ (
1/ )  

~~~~ 
N+!1

K(O ,t) — — L~0 ~ + 0 (.
~ J (2.7)

r (m+i)~~where 
~~~ 

— r (s)

t2) R~9, t—0 (c). We again expand exp ( 2 in powers of t and inte-
c(l—p )

grate termwise to obtain

2 exp(_ t/ ) — n+l n+1/
L(R t ) — £ E 1 

~~ 
(_!_) 2 K 1 (_i) ‘ ‘ ‘

n—O ~~~~ ~ 2& ~~

where K~ (z) denotes the modified Bessel function. For t — 0(c), (2.8)

can be readily approximated by truncating the series and applying the

Clenshaw-Luke method of backward recu rsion ([13], Section 11.8). An esti-

mate on the convergence ratio of (2.8) can be obtained by using the in-

equality

2 K~.,1, 
(
~~) l  < 1/2 F(n+1/2) (2.9)

3) K.>O, t—O(l). gy deforming the circle ~u — -~-—l ~ in (2.5) onto the

contour pictured below in Figure 1

Figure 1

can rewrite K(R,t) in the form

K(R,t) — —i—— sxp(— ~! + ~2] 
~ 
(z)dz (2.10)

Iiv’~ JC £
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wh re

g~ (z) — ex~[ts~~~ . (2.11)

By using ad hoc methods , it is now possible to obtain a complete asymptotic

expansion for K(R ,t) as c + 0 in the form

K(R,t) — ~~ exp(— 
~~~~

.) (l~~1(~)+d2(~)
2
+ ••• + d~(~•)~ + O(( {.)~

’
~)] (2.12)

where the coefficients d~ are expressible in terms of Hermite polynomials

((5]). In particular

1 R

4 2/i’

d — —
~~~~ H (_!_) + 1~. H (~!~) (2.13)2 2.4 8 

2~€~ 43 6 2j~

with similar expressions holding for the higher order coefficients. In

(2.13) H~(z) denotes Hermite’s polynomial.

The expansions in all of the above cases may be differentiated termwise.

UI. ~pproximation of Solutions to the “Backwards” Pseudo—Hea t Equation.

We now discuss the problem of approximating solutions of initial—

boundary value problems for the “backwards” pseudo—heat equation defined

by (1.2a) — (1.2c). One approach proceeds as follows. By replacing t by

and using the Fourier transform or Borel transform to construct a solu-

tion to the pure initial value problem, we can reduce problem (1.2a) — (1.2c)

to an initial—boundary value problem of the form

e £3u
~ 

— u~ — ~~u — 0 in D x (0,t0) (3.la)

u — f(~,t) on 3D x (O,t0) (3.lb)

u(~,0) — 0 in D. (3.lc)

Not. that (3. la) — (3.lc) differs from (2.la) — (2.lc) only in a sign change in

th. differential equation. Although this has no effect  on the well—poasdness

of th. problem , as we shall see it unfortunately has serious implications on
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the problem of constructing approximate ~~~~~~~~~~~~~~~~ small values of the

(positive) parameter a. This is, of course, not surprising for the limiting

case as c -~ 0 is now an improperly posed problem, i.e. the backwards heat

equation. If we follow the analysis of the previous section, it is seen that

we can represent the solution of (3.la) — (3.lc) in the form

çt f
u(~,t) — 

~~ J J p(~ ,r)j~~ - r(R,t—t)dsdt (3.2)

where p(~,t) is determined as the solution of an integral equation of

Eredholm—Volterra type and the notation is the same as in (2.3). We observe

that the only difference between (3.2) and (3.3) is that the argument of the

fundamental solution is t—t instead of t—r . This change, however, unfor-

tunately complicates the evaluation of r(R,t) since we are now interested

in the asymptotic behaviour of r(R,t) for t < 0 ins tead of t > 0. Except

for the expansion (2.8) the analysis of Section II breaks down and we are

forced into adopting an ad hoc approach yielding expansions of r(R,t) in

terms of a series of generalized hypergeometric functions or a Bessel—

Laguerre series (c.f. (41). Such expansions are of limited value in the evalua-

tion of r(R,t) for t — 0(1) and hence we are led to look for other approxi-

mation procedures.

To present such an alternate approach we return to the formulation

(l.2a) — (l.2c). We first note that if Aj is a sequence

lim j
j~~ x2 > 0

j

then in a sufficiently small complex neighbourhood of (0,t )  we can approximate

any analytic function defined in this neighbourhood by a finite linear com—

bination of functions taken from the set {e 
— 
j t) This result follows

from a theorem of Levin in the theory of entire functions and the reader is

referred to [12j, p. 219, for details. From the results of [2] we can now

conclude that any continuous function defined in B can be approximated
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in D by a linear combination of the functions

J~~l, 
(A
i

r) P (cos ~~~~~~~~~~~~~~~~~~ (3 4)

where Jn(z) denotes Bessel’s function and Pm(Z) an associated Legendre

function. We observe that

1 A 2

~~~ (~ ,t) — r ~2 ~ +
l,2

(A
jr) P

m(cos 0) exp [im$ — 

2 
(3.5)

l + c A ~

is a solution of (l.2a). Although the set (u
j
} is a complete set of

solutions when c.0U2]), for c>O the order of the equation is increased

and hence except for exceptional circumstances we would expect that extra

functions would have to be introduced to supplement the above set. (An

exceptional case occurs for example when D is a sphere and {A~ } are the

eigenvalues of the Laplacian in D.) In particular from the Runge approxima-

tion property for pseudoparabolic equations ([17]) and the re8ults of Section

II (approximating the pseudo-heat potential defined on the cyl inder

S x (O,t0] 3 0 ~ (O ,t01 by numerical quadrature) we have the following

Theorem , where completeness is with respect to the L2 norm over B x [O,t].

Theorem 3: Let (A~ } be as in (3.3) and let 
~~~~~~ 

be a dense set of

points on a sphere S ) D. Then the functions

(t 2
— j ~ ~~~~ 

F (l~ — ~l t—t )dr

0

1 A 2

usmj(~~
t) — r ‘2 jn+1/ (A

j
r) P (cos 0) exp (im~ — t]

where v — ~/ form a complete set of solutions to (l.2a) defined in

Dx  (0,t0].

Now let denote the comp lete set of functions def ined in

Theorem 3. In order to find an approximate solution to (l.2a) — (l.2c)

we minimize the functional
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N N
II t C Y ~~(~~~t )  — +(~)lt 2 + II I cn~

Vn(~
,t)lt 2 

(3.6)
n 1  L CD) n l  L (3D x [O,t 1)

0

N
and define the approximate solution to be I c ! (~,t). The functions ~‘

n 1  n n  n

can be evaluated by using existing tables for the computation of Bessel and

Legendre functions in combination with the results of Section II to approxi—

2
ma te 

~~~~~~~~~ 
r l~ — x j, t—r). Due to the fact that (l.2a) — (l.2c) is well

posed , the minimization procedure indicated above is stable . Following

Gaponenko ([10]) we require that the minimization of (3.6) allow not only for

the variation of the coefficients c but also for the basis functions Vn n
themselves, i.e. by considering 

~~
, j — 1, ..., N, and X~ , j  = 1, ..., N , to

be variables as well. Thus we are led to the problem of finding the min imum

of a function of the 6 N variables Re c
n, 

3m c , — ~9) , ~ ~
where 1 < j  < N. A related minimization problem is considered in [10] , to-

gether with its numerical implementation by the conjugate gradient method , and

a similar approach for elliptic boundary value problems has also been discussed

by Mathon ([14]).

IV. The Backwards Heat Equation in R2.

The analysis of the previous sections can be extended to treat the

backwards heat equation in R2, and in this section we briefly outline the

necessary modifications. Theorem 1 is valid in any number of dimensions. A

potential theory for the two dimensional pseudo—heat equation, can be developed

exactly as in Section II where the fundamental solution is now defined by

r(k,t—r) — — 

~~ 1w —~-,~~l — 

K0(wR) 
~~ 

f

~~
2(t..r)] 

du (4.1)

with K (z) denoting a modified Bessel function of order zero. From (6] we
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have the representation

K (a) — J e za (82_i)— ‘2 ds (4.2)
1

and hence from (2.5) we can write

r 1,
F(R,t )  — I K(Rs,t)(s2 — l) ‘2 ds. (4.3)

Expansion formulae for r(R,t) can now be obtained for R>0, t—OCc ) from

(2.8) and for R>O, t—O(l) from (2.12) since these expansions can be inte-

grated termwise with respect to H over the range (1,—). In particular from

(2.12) we have

r(R,t) - ~~~ J exp(- H a  (~2 - l)~~~2 ds + 0(t)

- exp(- ~j) J exp(- L~) (u2 - l)~~~ 2 du + 0(~~ (4 .4)

2 2
exp C- ~~) I(~ (~~j) + 0 (-~) .

The coefficients of the higher order terms can be expressed in terms of

Whittaker functions. Finally, the analysis of Section III proceeds in the

same manner except that the functions r ‘2 J +l, (A
i
r) Pm(cos 0)e3m4~

+jnOare now 
~n~~j

’
~~~

’
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